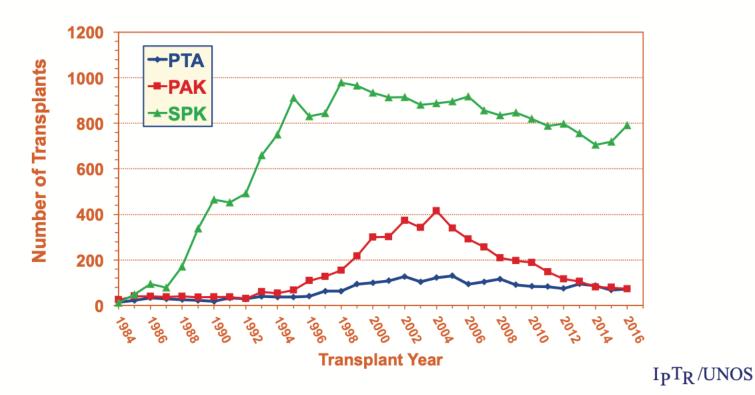
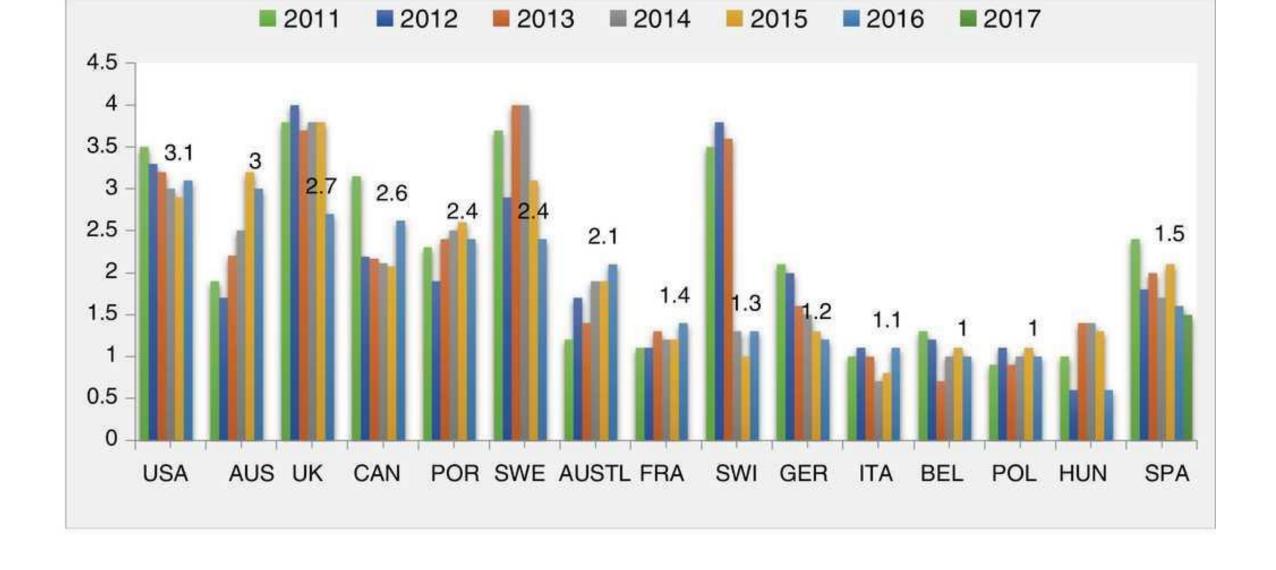
Pancreas-kidney transplantation in diabetes mellitus: Benefits and complications

Dr.N.Rasaei


Associated professor of nephrology


SUMS

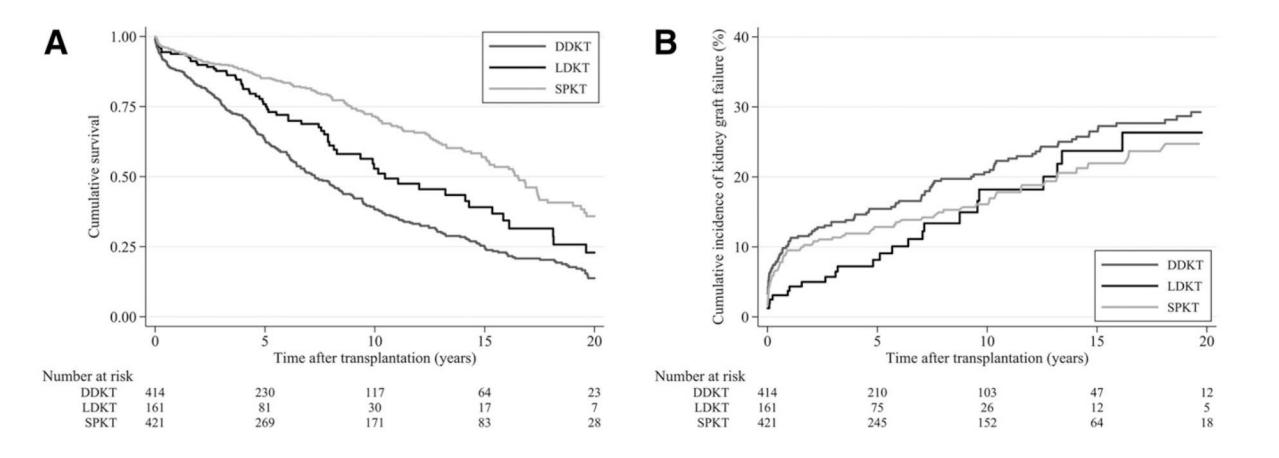
• SPK transplantation is an established treatment for selected insulinrequiring diabetic patients with either (CKD) or (ESKD).

Transplant Categories

USA SPK, PAK and PTA Transplants 1/1/1984 - 12/31/2016

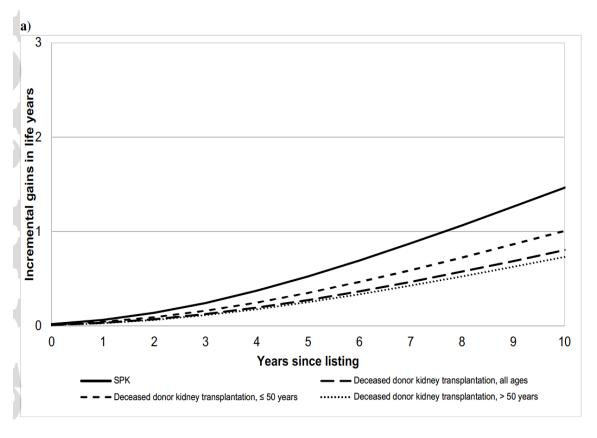
BENEFITS

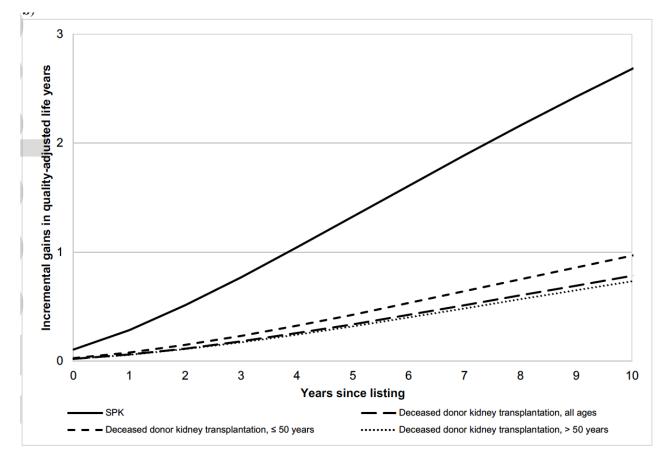
- ➤ The major benefits of simultaneous pancreas-kidney (SPK) transplantation are decreased mortality and improved quality of life.
- > The improved quality of life is due to:
 - freedom from frequent blood sugar monitoring
 - insulin therapy
 - glucose variability
 - dialysis

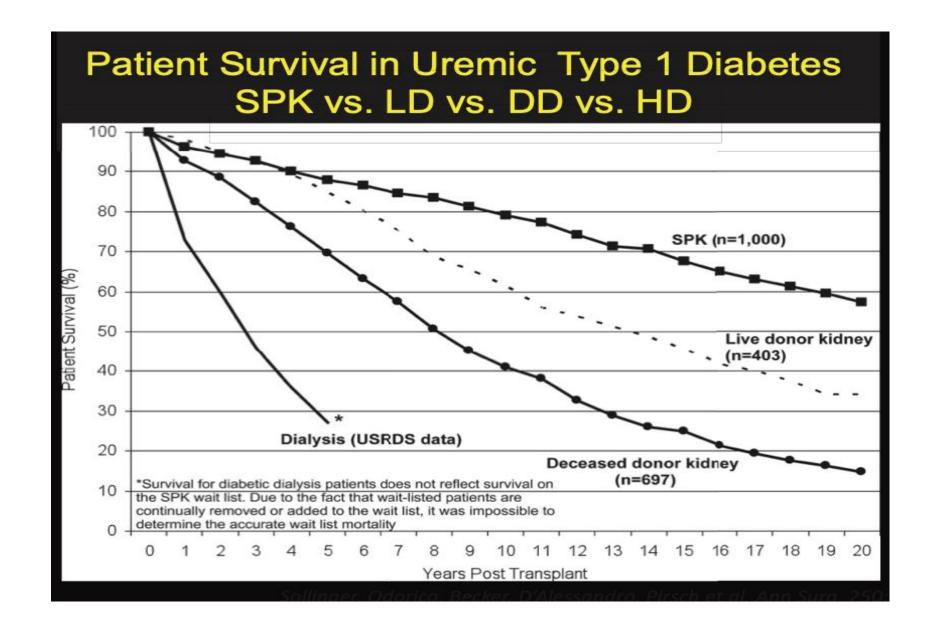

- Glucose metabolism
- Nephropathy
- Lipid metabolism and atherosclerosis
- Retinopathy
- Circulation
- > Fertility
- > Fracture risk

Superior Long-term Survival for Simultaneous Pancreas-Kidney Transplantation as Renal Replacement Therapy: 30-Year Follow-up of a Nationwide Cohort

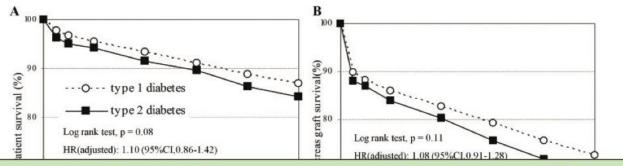
Kevin Esmeijer ¹, Ellen K Hoogeveen ² ³, Paul J M van den Boog ², Cynthia Konijn ⁴, Marko J K Mallat ², Andre G Baranski ⁵, Olaf M Dekkers ³ ⁶, Johan W de Fijter ², Dutch Transplant Centers; Dutch Kidney Transplant Centres

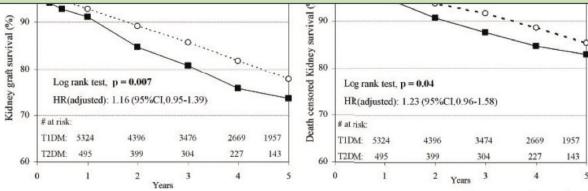

- ➤ cohort of kidney replacement therapy in patients with type 1 diabetes, included all 2,796 patients with type 1 diabetes in the Netherlands between 1986 and 2016.
- SPK transplant recipients with a functioning graft at one year (91 percent) compared with either deceased-donor or living-donor KTA recipients


Compared with living- or deceased-donor kidney transplantation, SPK transplant was associated with improved patient survival, especially in recipients with a longterm functioning pancreatic graft, and resulted in an almost twofold lower 10-year mortality rate.



Relative survival and quality of life benefits of pancreas-kidney transplantation, deceased kidney transplantation and dialysis in type 1 diabetes mellitus-a probabilistic simulation model


Figure 3. The cumulative incremental benefits of SPK and deceased donor kidney transplantation compared with being listed on dialysis, in a) life years, and b) quality-adjusted life years



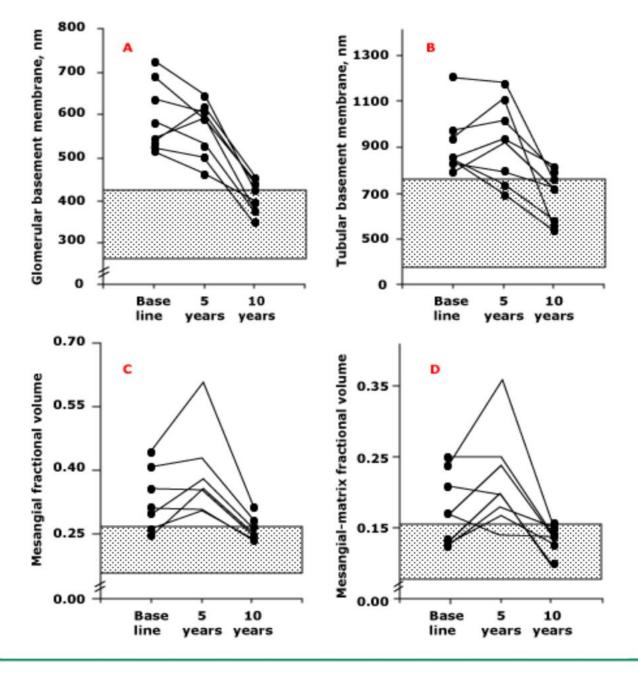
Comparable outcomes in SPK transplantation – T1DM v. T2DM

After adjusting for risk factors such as obesity, AA, age, PRA, etc. T2DM were not at higher risk.

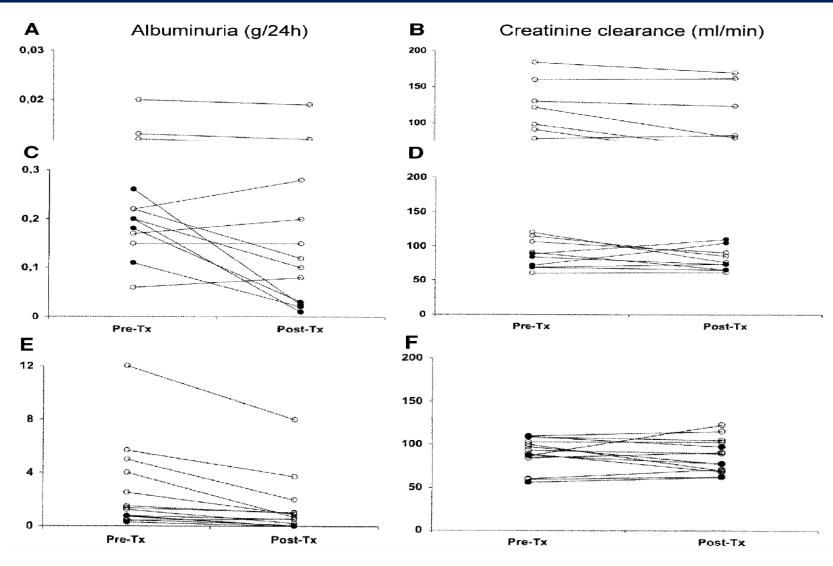
Better quality kidney and shorter waiting time.

Glucose metabolism

> Successful pancreas transplantation is defined as restoration of normoglycemia without the need for exogenous insulin.


- ➤ Glucose counter regulation also improves after pancreas transplantation because the transplanted pancreas produces not only insulin but also glucagon.
- > symptom recognition of hypoglycemia is restored and occurs at higher blood glucose concentrations.

Lipid metabolism and atherosclerosis


➤ Serum triglyceride and low-density lipoprotein cholesterol (LDL-C) concentrations tend to fall and serum high-density lipoprotein cholesterol (HDL-C) concentrations tend to rise in recipients of pancreas transplants.

Diabetic nephropathy

- Recurrent and de novo diabetic nephropathy is prevented by successful pancreas transplantation.
- > PTA may reverse established diabetic lesions in patients with early diabetic nephropathy.

The beneficial effects of pancreas transplant alone on diabetic nephropathy

> Diabetic neuropathy:

There is stabilization and, in some cases, improvement in peripheral and autonomic diabetic neuropathy after pancreas transplantation.

Diabetic retinopathy:

- The effect of pancreas transplant on diabetic retinopathy is not clear.
- Some studies have found no benefit in terms of halting or reversing the progression of advanced retinopathy after pancreas transplantation.

> Fracture risk:

- The risk of fracture may be lower following SPK transplant compared with that after KTA.
- The protective effect of SPK transplant on fracture was particularly evident among men.
- > Reproductive health
- Quality of life

COMPLICATIONS

➤ Complications are generally more severe and common in the first year posttransplant in (SPK) transplant compared with (KTA).

Pancreas failure

- The new definition of pancreas graft failure includes any of the following criteria:
 - A recipient's transplanted pancreas is removed
 - A recipient re-registers for a pancreas
 - A recipient registers for an islet transplant after receiving a pancreas transplant
 - A recipient's insulin use is ≥0.5 units/kg/day for 90 consecutive days
 - A recipient dies

➤ Donor factors:

- Donor risk factors for technical failure were :
 - age >50 years, BMI ≥30 kg/m², serum creatinine ≥2.5 mg/dL, and preservation time >20 hours.
- pancreas donor risk index (PDRI) to estimate the risk of early pancreas failure.

Recipient factors:

- Recipients over age 45 years carry a twofold greater risk of graft loss, most often due to technical failure, and a threefold greater risk of dying than younger patient
- Other recipient factors that have been associated with inferior pancreas outcomes are obesity (defined as BMI >30 kg/m²) and African-American race (compared with White American).

Variable	Median	IQR
Recipient characteristics		
Age at transplantation [years]	44.3	38.2-50.4
BMI [kg/m²]	23.1	21.5–25.6
Time on waiting list [months]	14.8	7.9–26.7
Time on dialysis [years]	2.5	1.3-4.2
Follow-up [months]	51	26–80
Donor characteristics		
Age at explantation [years]	35	20–42
BMI [kg/m²]	23.3	21–25
Graft travel distance [km]	156	91–284
Cold ischemia time [hours]	12.0	10-14.1
P-PASS	17	14–20
pDRI	1.198	0.961-1.382

Infection

- > Increased risk of bacterial, fungal, and viral infections
- > CMV
- > BK: tubulointerstitial nephritis and ureteral stenosis
- > UTI

Metabolic disturbances

➤ Metabolic acidosis:

 bladder exocrine drainage:normal anion gap metabolic acidosis, hyponatremia, and volume depletion.

> Hyperglycemia:

- result from pancreatic dysfunction due to rejection or technical problems, to calcineurin inhibitor toxicity, glucocorticoids or to recurrent diabetes.
- CNI induced:decreased insulin gene expression, decreased stability of insulin messenger RNA (mRNA), decreased insulin synthesis, and decreased insulin

Posttransplant erythrocytosis

- ➤ PTE is defined as persistently elevated hemoglobin and hematocrit levels that occur following kidney transplantation and persist for more than six months in the absence of thrombocytosis, leukocytosis.
- with the advent of enteric exocrine drainage, the incidence of PTE has decreased dramatically.

ADVANTAGES

Improved long-term patient survival**

(Compared to KTA)

Long-term Insulin-independence# (Up to 75% at 10 years)

Lower risk of MACE** (Compared to KTA)

Improved QoL*¥

(Improvement in Health--related QoL)

Minimally invasive procedure[&]

(Potential benefit in older patients and those with established CVD)

(Up to 75% at 10 years with improved glycemic control)

Improved QoL¥\$

(Improvement in IAH in up to

Long-term graft function*

100% of patients at 3 years)

DISADVANTAGES

Surgical risk¥#

(e.g. bleeding, leaks, fistulas)

Early graft failure

(Thrombosis and pancreatitis are the leading causes; incidence up to 8%)

Contraindication due to technical reasons

(Potencial candidates ineligible due to vascular disease/iliac artery calcification)

Insulin-independence^{\$&}

(only up to 53% at 5 years)

Multiple donors[&]

(more than one pancreas often required to achieve sufficient islet engraftment following transplantation)

Sensitization risk*5

(requirement of multiple donors may increase sensitization)

				Time on Wait		Graft Survival	
Study	Population	Design	FU Period	List and/or Dialysis	Patient Survival	Pancreas/ Islet	Kidney
SPK vs l	KTA						
Lindahl (2016) ⁶²	SPK (n = 256) vs LDKT (n = 230)	Single center	7.9 y	Wait list: ND Dialysis: SPK: 0.9 y, LDKT: 0.6 y	Survival on FU: 61% for SPK vs 44% for LDKT HR for mortality, ^a SPK vs LDKT CVD related: 0.63 (0.4-0.99); P = 0.047 All-cause: 0.81 (0.57-1.16); P = 0.25 CAD related: 0.63 (0.36-1.12); P = 0.12		
	SPK (n = 1,000) vs LDKT (n = 403) vs DDKT (n = 697)		20 y	ND	At 10 y: 80% for SPK; 50%-60% for LDKT; 40%-50% for DDKT		At 10 y: 38% for SPK; ND for LDKT, DDKT
Barlow (2017) ⁶⁰	SPK (n = 1,739) vs LDKT (n = 370)	Registry analysis	13 y	Wait list: SPK, 0.87 y; LDKT, 0.90 y Dialysis: ND	Better in SPK (with functioning pancreas at 90 d) vs LDKT (P = 0.042)		DGF: 15.5% for SPK vs 7.3% for LDKT (<i>P</i> < 0.001) Graft survival at 10 y: 77% for SPK vs 80% for LDKT (<i>P</i> = 0.25)
Fridell (2018) ⁶¹	SPK (n = 19,725) vs PAK (n = 5636)		10 y	Wait list: SPK, 1.2 y; KTA, ND	At 10 y: 70.3% for SPK; 86.3% for KTA ^b		69.8% for PALK vs 61.0% for LDKT; 66.0% for PADK vs 50.4% for DDKT

			Time on Wait		Graft Survival			
Study	Population	Design	FU Period	List and/or Dialysis	Patient Survival	Pancreas/ Islet	Kidney	
SPK vs PAK								
Fridell (2018) ⁶¹	SPK (n = 19,725) vs PAK (n = 5,636)	Registry analysis	10 y	Wait list: SPK, 1.2 y; PAK, 1.3 y Dialysis: ND	70.3% for SPK vs 63.2% for PAK (P < 0.001)	58.7% for SPK vs 44.4% for PALK vs 41.7% for PADK (<i>P</i> < 0.001)	61% for SPK vs 69.8% for PALK vs 66.0% for PADK (P < 0.001)	
Aquiar	SPK (n = 139) vs PALK (n = 18) vs PADK (n = 28)		10 y	Wait list: SPK, 1.6 y; PALK, 0.5 y; PADK, 0.3 y Dialysis: SPK, 2.9 y; PALK, 1.0 y; PADK, 2.8 y	P > 0.05 for SPK vs PALK vs PADK	PALK & PADK inferior to SPK (P < 0.05)	P > 0.05 for SPK vs PALK vs PADK	
Parajuli (2019) ⁸¹	SPK (n = 611) vs PALK (n = 12) vs PADK (n = 12)		15 y	Wait list: SPK, 0.5 y; PAK, 1.2 y Dialysis: ND	68% for SPK vs 71% for PAK (P = 0.79)	62% for SPK vs 71% for PAK (<i>P</i> = 0.38); <i>P</i> = 0.68 for SPK vs PALK vs PADK		
SIK/IAK	vs SPK/PAK							
Frank (2004) ⁸⁶	IAK (n = 4) vs SPK/PAK (n = 30)	Single center	IAK: 1.4 y; SPK/PAK: 1.2 y	ND	At FU: 96.6% for SPK/PAK vs 100% for IAK	Graft function (as per C-peptide secretion): no difference Insulin independence: superior for SPK/PAK (P < .04)	ND	
Lehmann (2015) ¹⁹	SPK/PAK (n = 94) vs SIK/IAK (n = 38)	Single center	5.6 y; SIK/		At 10 y: 88.5% for SPK/PAK vs 65.4% for SIK/IAK	Insulin independence at 5 y: 73.6% for SPK/PAK vs 9.3% for SIK/IAK	SPK/PAK	

